Gravitational Radiation from Rapidly Rotating Nascent Neutron Stars
نویسنده
چکیده
We study the secular evolution and gravitational wave signature of a newly-formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable equilibrium state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increases from zero to a maximum and then decays back to zero. Such a wave signal could be detected by broad-band gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f >∼ 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star. Subject headings: hydrodynamics — instabilities — stars: core collapse, supernova — stars: neutron — radiation mechanisms: gravitational Submitted to ApJ, May 1994 1 Address after September 1, 1994: Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 2 Department of Astronomy and Physics, Cornell University.
منابع مشابه
Models of Rapidly Rotating Neutron Stars: Remnants of Accretion Induced Collapse
Equilibrium models of differentially rotating nascent neutron stars are constructed, which represent the result of the accretion induced collapse of rapidly rotating white dwarfs. The models are built in a two-step procedure: (1) a rapidly rotating precollapse white dwarf model is constructed; (2) a stationary axisymmetric neutron star having the same total mass and angular momentum distributio...
متن کاملGravitational radiation from highly magnetized nascent neutron stars in supernova remnants
We consider the spin evolution of highly magnetized neutron stars in a hypercritical inflow just after their birth in supernovae. Presence of a strong magnetic field could deform the star and if the symmetry axis of the field is misaligned with that of stellar rotation, the star will be an emitter of gravitational wave. Here we investigate the possibility of gravitational radiation from such a ...
متن کاملThe R-mode Instability in Rotating Neutron Stars
In this review we summarize the current understanding of the gravitational-wave driven instability associated with the so-called r-modes in rotating neutron stars. We discuss the nature of the r-modes, the detailed mechanics of the instability and its potential astrophysical significance. In particular we discuss results regarding the spin-evolution of nascent neutron stars, the detectability o...
متن کاملSaturation of the R-mode Instability
Rossby waves (r-modes) in rapidly rotating neutron stars are unstable because of the emission of gravitational radiation. As a result, the stellar rotational energy is converted into both gravitational waves and r-mode energy. The saturation level for the r-mode energy is a fundamental parameter needed to determine how fast the neutron star spins down, as well as whether gravitational waves wil...
متن کاملR-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars
Recent work has shown that a young, rapidly rotating neutron star loses angular momentum to gravitational waves generated by unstable r-mode oscillations. We study the spin evolution of a young, magnetic neutron star including both the effects of gravitational radiation and magnetic braking (modeled as magnetic dipole radiation). Our phenomenological description of nonlinear r-modes is similar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994